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Robert F. Cahalan, Henning Leidecker and Gabriel D. Cahalan

A simple drop detector transforms the computer into a temporal
microscope, revealing a variety of rhythms in the common leaky tap

he regular beats of a slowly dripping faucet,

well-known to the insommiac, give way at

higher drip rates to increasingly complex

rhythms which aurally express the basic fea-

tures of chaos. While the interesting rhythms

are too rapid to be easily detected by ear, the
time intervals can be stored in a personal computer for lat-
er playback and analysis. The flow control and drop
detector used here were constructed as a school science
project. The detector connects to the printer port of an
IBM PC, which times the drops to microsecond accuracy
with a short program. As the flow rate is increased the
time intervals change from periodic to doubly periodic,
and finally to various forms of chaos, interrupted by
“windows” of periodicity. Several two- and three-dimen-
sional plots of this data are displayed below. One of the
simpler plots is approximately parabolic, where each
successive time interval is a quadratic function of the
preceding interval, with a steepness which depends upon
the flow rate. A better approximation adds a small linear
dependence on the interval before that, giving a Henon
attractor in three dimensions. Such models can be
programmed on the computer to simulate dripping faucet
rhythms and the sudden rhythm changes which occur as
the flow rate increases. At higher rates, the parabola
metamorphoses into a zoo of complex and beautiful
shapes, still not fully understood, but reproducible by any
common tap.

Robert F. Cahalan is a physicist working on the analysis and modeling of
the Earth’s climate in the Laboratory for Atmospheres at Goddard Space
Flight Center in Greenbelt, Maryland. Henning Leidecker is a scientist
working in the Materials Branch at Goddard Space Flight Center. Gabriel
D. Cahalan is a student at Central High School in Prince Georges County,
Maryland, and built the chronoscope and fluid control system described in
this article.

Predictability of Fluid Flow

Instability, extreme sensitivity, order in chaos

The complex behavior of the dripping faucet is surprising,
in view of the apparent simplicity of the forces involved.
The existence of many time scales in a relatively simple
fluid system underscores the potential complexity of fluid
flow. The ability to predict fluid flow is extremely
important in a wide range of problems. The equations of
fluid dynamics, which govern fluid flow past sailing
vessels, aircraft wings and other solid objects, as well as
the motions of the Earth’s atmosphere and oceans (which
determine the weather and climate), are extensions of
Newton’s force law to continuous media, and are
relatively well-understood. Smooth steady solutions to the
equations exist, but in order for a smooth flow to be
observed, it must not only obey the equations of fluid
dynamics—it must also be stable, so that perturbations in
the flow will not grow with time. Our notorious inability
to predict flows around aircraft, as well as the evolution of
weather and climate, arises because steady flows become
unstable as the velocity increases, and these instabilities
lead to complex turbulent phenomena.

Complex and unpredictable behavior like that found
in fluid turbulence was traditionally thought to involve the
interaction of many degrees of freedom, but similar
behavior has recently been observed in many relatively
simple systems. Poincaré anticipated this a century ago,
pointing out that orbits of satellites subject to gravity are,
under some conditions, extremely sensitive to initial
conditions, so that a satellite starting with a position and
velocity almost identical to a neighboring satellite would
soon find itself far from the other’s orbit. Such sensitivity
is responsible for the gap structure in Saturn’s rings and in
the asteroid belt (Wisdom, 1987). In such a situation any
small error in the estimated initial position or velocity of a



satellite grows to a large error in the predicted position.
Although any single orbit is uniquely determined from the
initial position and velocity, such a sensitive orbit is
effectively unpredictable, because the initial values cannot
be known with infinite precision.

Interest in this kind of behavior has been building
over the past quarter century. In 1963 Edward Lorenz
found extreme sensitivity to initial conditions in a
relatively simple set of three differential equations
describing convection in a fluid heated from below. For
small heating, the convection occurs in smooth laminar
rolls which turn steadily clockwise or counterclockwise.
As the heating is increased past a critical value, however,
the fluid begins to alternate irregularly between clockwise
and counterclockwise, overturning with no predictable
pattern. Complex and apparently random behavior has
since been found in a variety of simple systems which obey
deterministic laws, and so had previously been thought to
be quite predictable. At the same time, simple determinis-
tic relationships are being uncovered in systems previously
thought to be quite complex because of their apparently
random behavior. Simple systems can lead to chaos, and
chaos can mask a hidden simplicity.

Logistic equation: period-doubling route to chaos

The dripping faucet experiment, pioneered by Robert
Shaw and Peter Scott of the University of California,
Santa Cruz, exhibits all the characteristic complexities of
chaos in a simple setting. For a certain range of flow rates,
the time interval between the nth drop and its successor,
T, . ., is found to be determined by the preceding time in-
terval, T,, through a parabolic relation. The chaotic
nature of this so-called “logistic” equation was highlight-
ed in 1976 by R. May in a study of population growth
models, where the fraction of the total population capacity
obeys a similar rule. The periodic solution, T, = T, has a
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Fig.1: Schematic of dripping faucet experiment. Liquid filling a reservoir
to height H passes through a capillary tube of length L and inner
diameter D to an eyedropper, from which it drips through a double-lens
focusing tube. A beam of light from an infrared LED enters the tube
from the left, is focused in the center where it is intersected by the drops,
and exits on the right, where it is focused on a photodiode detector. Each
drop causes a pulse from the detector to be sent to an IBM PC, which
computes and saves the time intervals.
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Fig.2: Circuit diagram for the photodiode detector. The beam from the
infrared LED creates a current in the photodiode which is amplified by
two 741 op amps to a voltage given by IR,R,/R;, which is input to a 555
timer. The timer is configured as a “one-shot”, which means that its out-
put, normally OV, suddenly goes “high” when a drop blocks the beam,
causing the output LED to flash. The output potentiometer is set so that
“high” = 5V, output to pin 11 of the PC parallel port.

stability determined by the slope of the parabola at the pe-
riodic point. As the flow rate increases, the parabola
steepens, and the magnitude of the slope consequently
increases. When it exceeds 1, the periodic solution
becomes unstable, and one begins to find an alternating se-
quence, T,, T,, T,, T,, and so on, so that drops occur in
pairs. This “doubly-periodic” solution becomes unstable
at a slightly higher flow rate, and each of the alternating T
values becomes an alternating pair, giving a repeating
sequence of four different T°s. At a still higher flow rate
there are eight different T’s, and so on. This process of
“period-doubling” continues until a critical flow rate,
beyond which one finds chaotic behavior (except for
“windows” of periodicity at certain flow rates).

Similar chaotic fluctuations occur in a wide variety of
systems. Though individual chaotic fluctuations are
unpredictable, the period-doubling sequence which leads
to chaos has some predictable properties which are largely
model-independent, being related to a universal “Feigen-
baum constant.” In 1980, Mitchell Feigenbaum showed
that such transitions occur not only for the parabola, but
for a large class of nonlinear functions, and that the
parameter values (flow rates) at which the transitions
occur have a universal relationship independent of the
particular model function.

The logistic equation fails to hold at higher flow rates
in the dripping faucet, and the droplet time intervals begin
to exhibit more complex relationships. In the three-
dimensional space with coordinates T, , ,, T, and T .,
the data lie on various fractal subsets whose complex and
beautiful forms were first documented by Shaw and Scott
(Shaw, 1984; see also Martien et al., 1985; Yepez et al,,
1989; Wu et al., 1989 and Wu and Schelly, 1989). Despite
their complexity, these strange fractal forms are repro-
duced in some detail by the time intervals of drops coming
from any common leaky tap. This paper attempts to make
this beautiful experiment more widely accessible.



Apparatus and Calibration

A schematic of the experimental apparatus is shown in
Fig.1. It consists of five components: (1) a reservoir, in
which the liquid is maintained at a constant level, and
from which the liquid flows to an eyedropper through a
capillary tube of length L and inner diameter D; (2) a cy-
lindrical tube with two identical halves, in which identical
lenses are mounted, and which are coanected by an
adjustable central tube, through which the liquid drips via
openings in the side; (3) an infrared LED light source,
which supplies light through a small hole in the center of
one end of the tube; (4) an infrared photodiode detector,
which detects light exiting from a small hole in the center
of the opposite end of the tube, and which is connected to
pin 11 of the parallel printer port of (5), an IBM-
compatible personal computer.

Table 1 gives a list of parts, obtainable at common
electronics, plumbing, and office supply stores. Assuming
the computer is already available, the system can be built

Table 1. Parts for Time Drop Experiment

Fig.3a shows two calibration curves for each of two
capillary tubes connected to the reservoir and the
eyedropper by flexible tubing. Only the fluid height in the
reservoir is used, so that the flow rates are shifted up by
the pressure drop from the reservoir to the eyedropper.
The two on the right are for a capillary tube of length
L=10 cm, and inner diameter D =0.88 mm. The
observed slopes here are 0.1033 and 0.1053, close to the
value predicted from (3): Q, = 0.1777*(0.88)* = 0.1066.
The intercepts are determined by the vertical height of the
capillary tube and eyedropper. In this case they were
lowered by 12 cm, shifting the line up by (12/10)*Q,. The
two lines on the left are for a capillary tube of length
L = 25 ¢m, and inner diameter D = 1.33 mm. In this case
the observed slopes are 0.6209 and 0.5565, compared to
the predicted value Q, = 0.1777*(1.33)* = 0.5560, and
the tube was lowered 16 cm to shift the line up by
(16/25)*Q,.

The program shown in Listing 1 measures the time
intervals of 1000 drops, whose sum is the total time, T.

| gallon plastic containers (2)

car or lab jack

100 cc graduated cylinder

capillary tubes: D, L~1 mm, 10 cm
eyedropper

rubber tubing, plumber’s goop
thumbscrew clamp

dark dye

mailing tube

15-watt soldering iron

sponge, glue

60/40 rosin core solder

wire wrap tool, 30 AWG Kynar wire
prepunched perfboard

9V batteries, clamps, clips (3)
resistors: 1K (2}, 10K (1) and 100K (3)
capacitors: 0.01zf, 0.1uf, 1.5uf

IR LED source, photodiode detector
741 op amps (2)

555 timer

8-pin IC sockets (3)

single-pin sockets

alligator clips (2)

double-wrapped wire

heat-shrink tubing

25-pin parallel port connector
IBM-compatible personal computer

very economically. The simplest working system has been
used here, and some enhancements are considered in the
concluding discussion.

Supplying the fluid through a capillary tube, as
shown in Fig.1, makes the flow rate vary linearly with the
height of the fluid, H. Choosing D=1 mm ensures
laminar flow if H/L is less than about 10, and in that case
the volume flow rate, Q, is related to H by Poiseuille’s
equation,

where
Q, = mgD*/(128v) (2)

is the rate at H/L = 1. (See for example, Batchelor, pp.
180, 186). When D ~ 1 mm and v~ viscosity of pure water
at room temperature (1 cm?/s), then Q, = 0.24 cm’/s.
The viscosity of the dyed water used here is a factor of 1.35
larger, giving

 =0.1777*Dcm?/s, (3)
where D is expressed in mm. The volume flow rate can be
measured at any chosen height by accumulating the
volume over, say, one minute. According to (1), a plot of
Q versus H/L should produce a linear calibration curve
with slope Q;.
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The mean drip rate (the number of drops per second) is
then

r=1000/T = 1/T,.., (4)
where T,,. is the average of all the drop intervals. T, is
the average time required for a single drop to fall, so if we
knew the average volume per drop, v,.., the volume flow
rate would be

Q = Vave /Tave = Vavel. (5)
In other words, a plot of Q versus r produces a curve
whose slope is v,,.. When v, is independent of Q, the re-
sulting plot should be linear.

Fig.3b shows a plot of the volume flow rate versus the
mean drip rate for the same runs used in Fig.3a. For flow
rates less than about 0.7 cm?®/s, or drip rates in the range
3-7 drops per second, a straight line provides a good fit,
and the least-squares slope gives a drop volume of 0.074
cm’, corresponding to a spherical diameter of 5.2 mm. A
second linear fit in the range 7-12 drops per second gives a
drop volume of 0.047 ¢cm’, or a diameter of 4.35 mm. Fin-
ally, from 12.5-18 drops per second we obtain 0.015 cm’,
or a diameter of 3 mm, approaching that of the dropper
orifice, which is 2.4 mm. Any desired drip rate, or mean
time interval, may be obtained by finding the correspond-
ing flow rate from Fig.3b, and then adjusting the fluid lev-
el to the required value indicated in Fig.3a.
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Fig.3: Volume flow rate, Q, in 0.1 cm® per second versus (2) fluid height
over capillary tube length, H/L, in units of 0.1, and (b) drip rate, which is
r=1/T,,., in drops per second. The two callibration curves on the left in
(a) are for the capillary tube with length L =25 cm and with inner diam-
eter D=1.33 mm, while the two on the right are for the capillary tube
with length L =10 ¢cm and with inner diameter D =0.88 mm. The slope in
(b), determined by least-squares for three ranges of drip rates, gives the
average drop volumes: v, , =0.074 cm® for r=3-7 drops/s; v,,, =0.047
cm® for r=7-12 drop/s; and v,,, =0.015 cm® for r=12-18 drops/s.

Spurious Rhythms

Before discussing true drip rhythms, it is important to
recognize the types of errors which can occur in the
dripping faucet experiment: (1) systematic error or
“drift”; (2) missing or spurious data; (3) random error;
and (4) nonstationarity. Examples of each are shown in
Figs.4a to 4d, which show “time series” of time interval
data versus drop number for four different runs. Exclud-
ing 4b and ¢, in all figures the time interval axis has a range
of 50 ms, and the drop number axis has a range of 1000.
(Note that unlike conventional time series, these drop
measurements do not occur at equally spaced times.)
Fig.4a shows a run with systematic drift toward shorter
time intervals. Such behavior is associated with changing
environmental conditions. For example, the water reser-
voir’s siphon tube drifts to a different position, or a
furnace switches on and begins to blow warm air over the
experiment, etc. To eliminate drift, the experimental
apparatus needs to be stable and isolated from external
influences. In the second run (Fig.4b), the detector was
not properly aligned with the drop stream, so that a
number of drops failed to trigger the detector. When a

drop is missed, the measured time interval is the sum of
two actual time intervals, or approximately twice the
mean time interval. Less frequently, two successive drops
may be missed, and the measured time interval is
approximately three times the mean. This problem is
eliminated by careful beam focusing and alignment. Any
spurious time intervals shorter than the mean probably
indicate a problem in the detector circuit, or the parallel
port.

Fig.4c shows a run with large random variations in
the measured time intervals. This could be due to high-fre-
quency environmental vibrations, or to limitations in the
experimental apparatus. Random error can be reduced,
but only to a lower limit which depends upon the limited
accuracy of the measurements, which is related to the size
of the drops, the size of the focused beam, the timer
resolution, and so on. In practice, if the experimental
parameters (flow rate, orifice geometry, etc.) are not too
dissimilar to those used here, then it is sufficient to reduce
the measurement error to less than ~1 ms in order to
observe the fractal patterns of chaos discussed below. The
measurement error becomes relatively more important at
higher flow rates, and will determine the maximum flow
rate at which useful data can be obtained.

Fig.4d shows a run in which the time intervals are
nearly constant for more than 300 drops, after which there
suddenly appear two different time intervals. This kind of
nonstationary time series, in which the statistics suddenly
change for no apparent reason, makes both prediction and
data analysis very difficult. Such behavior is not due to
any experimental error, but is characteristic of chaotic
systems. Dynamical models with this kind of behavior are
said to be ‘“almost intransitive” (Lorenz, 1975). If the
Earth’s climate is almost intransitive, then it cannot be
uniquely determined by boundary conditions such as the
solar constant or atmospheric CO, concentration. Such a
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Fig.4: Time interval versus drop number for data containing four types of
problems: (a) drift; (b) missing drops; (¢) random scatter and (d)
nonstationarity.



is always followed by a longer T, , ,, and vice versa. Each
cloud is elongated and slightly curved due to the transient
chaos. Finally, the chaotic drips produce the long curved
clouds shown in Figs.6c and 6d, the first appearing
smooth and parabolic, while the second, which has been
dubbed the “camel,” has more structure. The emergence
of such orderly curves from the apparently highly random
data of Figs. 5c and 5d is quite amazing.

The astonishing implication of these curved clouds is
that, to the extent that the small width can be neglected,
each time interval is precisely determined by the preceding
one, through some function F, such that T, , , = F(T, ).
If we had zero measurement error, the timing of every
drop could then be. predicted from the time interval
between just the first fwo drops! Unfortunately, we will

T

n-+1

e

(b)

Fig.7: (a) Three-dimensional plot, (T, , T, ;, T, , ), from data of Fig.5c.
Note the 3-stripe ribbon structure. (b) The Henon attractor computed
from equation (21), using p=3.45, ¢—0.345, and displayed in the same
three-dimensional coordinates as the water drop data of Fig.7a.
Magnification of any of these stripes reveals a 3-stripe substructure,
which becomes self-similar at high magnification.

find in the next section that even when F is a simple qua-
dratic function, any initial measurement error, no matter
how small, rapidly grows larger as more drops fall, until
the predicted time interval can appear anywhere in the
cloud. So despite the simple relationship described by the
function F, the chaotic rhythm can be predicted only for a

few drops, while longer-term prediction is no better than a
random guess—not unlike our experience with weather
prediction. Fortunately, chaos is better than randomness
in at least two ways: firstly, some features of the period-
doubling route to chaos seen in (a) to (c) can be predicted
even without detailed knowledge of F, as the next section
will discuss; and secondly, chaotic time series can be
predicted from initial values for a certain limited
predictability time, which is estimated for the dripping
faucet in the concluding section.

Before moving on to higher flow rates, let’s take a
closer look at Fig.6¢c. It would seem to be a parabola, ex-
cept for the cluster of points which starts just below the
peak and extends across the parabola to the right. That
would make the function double-valued, so that a drop
arriving at an interval of 150 ms could be followed either
by one at 146 ms or another one at 150 ms. If the time in-
terval cannot be predicted uniquely from the previous
interval, is it enough to give the previous fwo intervals? To
find out, we create a three-dimensional scatter plot, using
(T, Th 1, Ta2) as coordinates, as shown in Fig.7a.
(Such plots cannot yet be created with common spread-
sheets like Excel. This was done with the Macintosh
program “MacSpin.”) The extra dimension “uncrosses”
the data, so that T, , is a unique function of T, and
T, . . Fig.6c is just the projection of Fig.7a onto the plane
of (T,, T,, ) lor equivalently (T,,,, T,,,)]. Note
that what had looked like a rather complex cloud in
two dimensions can now be seen as a double-humped
ribbon in three dimensions, with three separate stripes
running along its surface. Fig.7b shows a similar three-
stripe ribbon generated by adding a linear T,_; term to the
parabolic F(T, ), giving the so-called Henon map dis-
cussed below. The ribbon in the Henon map may be
examined in great detail since one is not limited by
measurement error. Each stripe is found to be made of
three smaller stripes, and each of these can again be
resolved into three smaller ones, and so on. It is a fractal
ribbon!

Higher Drip Rates

Even as young children, we notice that cloud shapes in the
sky often momentarily suggest cars, sheep, camels and a
whole zoo of ordinary objects. In the dripping faucet we
encounter a zoo of scatter plots as we go to higher flow
rates, but unlike real clouds, the animals in this zoo are re-
producible in detail, and become quite recognizable once
you see them forming in different experiments, although
they may appear at different flow rates. Here we look at
six examples at increasing flow rates. The time series are
shown in Figs.8a to 8f, and the corresponding (T, T, ;)
plots are shown in Figs.9a to 9f. As in Figs.5 and 6, the
axes always cover a time interval range of 50 ms and drop
numbers of 1-1000, with precise values given in the figure
captions.

We have named the first example, shown in Figs.8a
and 9a, the “cobra.” Actually, the naming privilege
should be reserved for the original discoverers, Shaw and
Scott, who found it at a somewhat higher drip rate, as the
inset at the upper right in Fig.9a shows. The inset is from
Shaw (1984, p. 13) and is centered at 95 ms, with a width
of 20 ms. The cobra was observed in the present
experiment at T,,. = 123 ms, or a mean drip rate of 8.1



climate can change without any difference in external
conditions, or appear to be steady even when conditions
do change. When this occurs in the dripping faucet, it may
be necessary to take data for many more than 1000 drops
to see clearly what is happening.

Examples of “good” data in each of the three linear
regions in Fig.3b will now be described, beginning with
the slower drip rates, in the range from 3-7 drops per sec-
ond. Small changes in the drip rate can produce
qualitative changes in the rhythm of the drops, especially
for the higher drip rates. These changes may not be
evident to the unaided eye or ear, but become quite
obvious when plotted as described below. To ensure that
all possible types of rhythms are observed, it is important
to vary the rate over sufficiently fine intervals, increasing
the height by, say, 1 cm in each run. Certain heights may
require further investigation after data analysis reveals
which rates are of most interest.

Low Drip Rates

Figs.5a to 5d show time series from four runs of gradually
increasing flow rate, with mean drip rates of r=15.70
drops/s, 6.25 drops/s, 6.75 drops/s and 6.80 drops/s. At
the slowest rate, case (a), the rhythm of the drop stream is
approximately periodic, so that most of the time intervals,
with the exception of a few outliers, lie close to the mean
interval, with small random deviations. The histogram of
the deviations (not shown) approximately follows a
normal curve, with large deviations having low probabili-
ty. The standard deviation depends upon details of the
measuring apparatus, and in case (a) itis 0.15 ms, roughly
the time needed to read the IBM PC timer.

At slightly higher rates, case (b), the drops begin to
arrive in pairs, producing a duple rhythm, so that the time
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Fig.5: Time interval versus drop number at four low drip rates. The
vertical axis covers the range 140-190 ms, and the horizontal 1000
drops. (a) periodic dripping, with a drop every 175 ms, or 5.70 drops/s;
(b) biperiodic dripping, with a pair of drops 156 ms apart occurring every
166 ms, or an average interval of 161 ms, or 6.25 drops/s; {c) chaos with
an average interval of 148 ms, or 6,75 drops/s; and (d) chaoes with an
average interval of 147 ms, or 6.80 drops/s.

0 1000 0 1000

intervals begin to alternate between a shorter value and a
longer value, again with deviations which lie close to each
of the two mean values, which are 155.93 ms, with a
standard deviation of 0.88, and 166.00 ms, with a standard
deviation of 1.25. The larger deviations occur in the first
part of the record, and have a more uniform distribution
than in case (a). This is due to transient chaos, which dies
out by around drop 800, after which the standard
deviations reduce to 0.17 and 0.27, respectively.

When the drip rate is again slightly higher, case (c),
the drops begin to produce a permanent chaotic rhythm.
The mean drip rate here is about 6.75 drops/s, or
T,.. = 148 ms, but the deviations from the mean, unlike
those in (a) and (b), do not tend to lie near the mean, but
peak near the maximum positive and negative deviations,
with a sharp cutoff outside these values, and a shallow
minimum in between. Increasing the drip rate to 6.80
drops/s, or T,,. = 147 ms, broadens this bimodal distri-
bution, as seen in case (d).
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Fig.6: Time interval versus next time interval, (T,, T, ,), from data of
Fig.5. Each axis covers the range 140-190 ms. (a) periodic case from
data in Fig.5a; (b) biperiodic case, showing that drop intervals alternate
between the two levels in Fig.5b, with variations in each ievel due to tran-
sient chaos; (c) the “parabola” formed by the random-looking data of
Fig.5¢c, with a blowup in the range 140-154 ms; and (d) the “camel”
formed by the random-looking data of Fig.5d, also with a blowup in the
range 140-154 ms.

Is each time interval in case (c¢) chosen randomly
from the probability distribution, or is it possible to
actually predict the successive drop times which produce
this chaotic rhythm? To have any hope of predicting, there
must be some correlation between one interval and the
next. Figs.6a to 6c show scatter plots of (T,, T, ;) for
each of the time series in Figs.5a to 5d. (To reproduce
these in Lotus or Excel, copy the data into the second col-
umn, but start one row higher. Then make a scatter plot,
with column one plotted on the x-axis and column two on
the y-axis.) The periodic case, Fig.6a, produces a single
cloud of points centered on the mean. The biperiodic case,
Fig.6b, produces two separate clouds, so that a shorter T,
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Fig.8: Time interval versus drop number at six higher drip rates. In each
case the vertical axis covers a 50 ms range, and the horizontal 1000
drops. (a) chaos at 8.10 drops/s; (b) chaos at 8.17 drops/s; (c) a run in the
first periodic window at 8.93 drops/s, with the inset showing time
intervals of drops 501-540 with a range 110-114 ms; (d) chaos at 9.82
drops/s; (e} two runs in the second periodic window: triplet rhythm at
11.88 drops/s; with the inset showing a quadruplet rhythm at 13.28
drops/s; and (f) chaos at 17.58 drops/s.

drops/s. Even small-scale details are quite reproducible!
Like the parabola, the cobra is double-valued, and appears
as a three-stripe ribbon in three dimensions (not shown).
The time intervals in Fig.8a are concentrated around three
values—110 ms, 117 ms, and 134 ms—so that there is a
triple rhythm embedded in the cobra. A clearer period 3 is
shown below. In the next section we will see that such tri-
plets are related to a phenomenon called a “tangent
bifurcation.”

At the slightly higher drip rate of 8.17 drops/s, the
cobra is replaced by a brood of smaller snakes, the
“adders” of Figs.8b and 9b. The usual three-stripe pattern
appears again, as shown in the inset in 9b, which is a
blowup of the right side. The breakup of the cobra into
these smaller structures as the rate increases is a kind of
“reverse” bifurcation—the opposite of the sequence seen
at lower rates (Figs.6a—6d). As the rate continues to
increase to 9—10 drops/s, a periodic “‘window” occurs. An
interesting example is the “ring” shown in Figs.8¢ and 9c,
at a rate of 8.93 drops/s, or T,,. = 112 ms. The inset in 8c,
which shows a blowup of 40 drop intervals from the
middle of the ring’s time series, reveals a rapid oscillation
over a range of about 2 ms. The power spectrum of this os-
cillation (not shown) has a sharp spike at a period of 3.55

Fig.9: Time interval versus next time interval, (T, T, ), from data of
Fig.8. Each axis covers a 50 ms range. (a) the “cobra”, with inset
reproduced from Shaw (1984); (b) the “adders”, with enlarged inset
showing the 3-stripe pattern familiar from Fig.7; (c) the periodic
modulation seen in the enlarged inset of Fig.8c produces the “ring” seen
in this inset; (d) above the first periodic window the chaos is more
complex, as in the “ostrich” shown here; () in the second periodic
window there is intermittent choas, omitted in these composites of the
triplet rhythm (solid triangles) and the quadruplet rhythm (open
squares); and (f) above the second periodic window, we find the
enigmatic “sphinx.” '

drops, or about 398 ms. This slow 398 ms modulation of
the 112 ms period leads to the circle shown in the inset in
9¢, which is a kind of Lissajous figure for the drop stream.
This kind of behavior was also observed by Wu et al.,
(1989).

The periodic window ends at about 100 ms, below
which more complex chaos appears, some with loops such
as the “ostrich™ of Figs.8d and 9d, or the “eagle” observed
by Shaw et al., or with multiple hills and valleys. There
follows another periodic window with a triplet rhythm, as
shown in Figs.8¢ and the solid triangles in 9e. This is a
prime example of the phenomenon of “intermittency,”
observed in all kinds of fluid turbulence, in which periods
of smooth periodic behavior are interrupted by irregular
bursts of chaos. This example shows 5 time periods with
the triplet periodic rhythm, separated by 6 time periods
during which the rhythm is chaotic. The triplet periodic
points are plotted as solid triangles in Fig.9e. More chaos
occurs at flow rates above the triplet window, followed by
a third periodic window. An example here is the
quadruplet rhythm shown in the inset in Fig.8e. This
example also exhibits intermittency, as in the triplet case.



x = half the vertical height of the clock hand below 12
o’clock, then

x, = [1 —cos(2mA,)]/2. (9)
Substituting (9) and p = 4 into the logistic equation gives

[1—cos(27A, 1)1/2=[1—cos(2mA,)] X
[1+cos(27A, )] =[1—cos(47A,)]/2

where on the right side we used the trigonometric identity
(cos(27A))? = [1 + cos(47A)1/2. Comparing the left
and right sides, we see that

A,.,=2A, mod l. (10)

Here mod 1 means to drop the integer part of A, and keep
just the fractional part. Since each iteration doubles A, the
initial angle A, gets doubled n times to get A,. This
completely solves the logistic equation. For any x,, we can
compute the initial angle by solving (9) for A,, and
setting n =0 to get

A, = [cos ™' (1 —2x0)1/(2m). (1)

We then find the complete sequence of angles from A, us-
ing the following:

A, —2"A, mod 1. (12)

Finally, we substitute these into (9) to get the sequence of
x,. So all the x, are precisely determined from x,.

As a simple example, start with x, =2 1in (11). Then
1 —2x,= —1, and since cos ' (—1) = 120°=27/3
radians, we get A, = 1/3, so the clock hand is at 4 o’clock.
Doubling A, gives A, =2/3, moving the hand to 8
o’clock. Then from (9) we get
x; = [1—cos(4p/3)]1/2=3. Although A has doubled, x
is unchanged, since 4 o’clock and 8 o’clock have the same
vertical height. Doubling A again gives 4/3, but only the
fractional part matters, so A, = 1/3, which puts us back
at 4 o’clock, and again x, =3. So the angles alternate:
A =1/3,2/3,1/3,2/3, or 4 o’clock, 8 o’clock, 4 o’clock, 8
o’clock, and so on. Apparently it’s either teatime or
bedtime! The height of the hand (representing the drop
time intervals) is apparently stuck at a fixed point: x =3,
3,3, 3, and so on. This fixed point agrees with x,* found by
substituting p =4 in (8). However, in order for this
solution to actually be observed, it must also be stable, so
that perturbations will not grow with time.

To investigate stability, we shall use a calculator as a
digital clock. Calculating the sequence of angles from
equation (10) is simple arithmetic, and can be done by
hand. But let’s suppose for a minute that equation (10) is
as complicated as weather prediction equations, and we
have to compute it with a calculator, again starting at
A, = 1. Calculators, even big computers, do not know
fractions. So the computer will have some approximation
to 4 o’clock, say A, = 0.333. Let’s follow it for the first 12
computations of equation (10): A; = 0.666, A, =0.332
(dropping the 1), A;=0.664, A, =0.328, A5 = 0.656,
A,=0.312, A, =0.624, A;=0.248, A,=0.496,
A, =0.992, A, =0.984, A, = 0.968. Even though the
initial error was only about 0.1%, after 10 steps the

Drops from the eyedropper drip through the 2-lens focusing tube shown
here, where they block an infrared beam from the source circuit at right.
The drop in intensity detected at the photediode on the left of the tube is
amplified and converted to a digital pulse by the circuit at bottom
(Fig.2), which is then sent to the parallel port of an IBM-compatible
computer (here a T1000 laptop), where data are accumulated by the C
program in Listing 1.

The fluid flow is controlled by siphoning it from a tank (here a gallon
container at upper left) to an overflow reservoir mounted on a jack, and
then to a fixed reservoir, where the fluid height is varied by adjusting the
jack, and finally through a horizontal capillary tube (at right center) to
the eyedropper.



Drops emerge from the eyedropper at a few per second. The larger one,
about 3.34 mm in diameter, has an oscillation period of about 18 ms. The
small satellite drop left by the recoiling fluid column, about 0.5 mm in di-
ameter, may be missed by the detector. Its oscillation period is about 1
ms, so that it completes roughly one cycle during the exposure time of
the picture. The remaining three photos show stages in the recoil of the
water column. Note the capillary waves on the column’s surface in the
photograph at far right.

predictions are 100% wrong, and the clock has started to
tick erratically! The error has grown by a factor of 1000 in
10 ticks!

The calculated values initially move away from the
fixed point at x,* = 2 because it is unstable, but why does
the chaos continue when the clock is not near that point?
Let us investigate the behavior at some other point, not a
fixed point. Let’s just start the clock at some random
instant, and since irrational numbers are more common
than fractions, let’s choose A, =2 ~* = 0.707. It is easiest
to see what happens if instead of using decimals (tenths,
hundredths, thousandths, and smaller powers of ten) we
expand A, in binary (halves, fourths, eighths, and smaller
powers of two). If our calculator has 8-bit accuracy
(although most have 80 bits), then we have A, = 0.1011
0100. Multiplying by two just changes halves to ones,
fourths to halves, and so on, which has the effect of
shifting each bit one place to the left, like multiplying by
10 in decimal. The bit that crosses the decimal point gets
dropped, since we keep only the fractional part. This
action of equation (10) on the bits of A is a Bernoulli shift.
Applying this shift to A, gives A; = 0.0110 100b,, where a
new bit, b,, has appeared. Its value is related to the
roundoff error of the calculator. As we continue to apply
the Bernoulli shift, the bits present in A, are shifted past
the decimal point and stripped off one by one, and more
error bits get shifted toward the decimal point, until no
memory of the initial angle remains, and further predic-
tions are based only on roundoff error. This will occur for
any choice of A,, so we can conclude that every point is
unstable when p =4. As a result, the logistic equation
becomes a random number generator!

What is the probability distribution of these random
numbers? Imagine setting each of 100 clocks to a random
time by spinning the hand like a fortune wheel. Assume

any initial time is equally probable, so approximately half
the clocks are between 12 and 6, with 0 < Ay <1, and half
are between 6 and 12, with 1/2 <A, < 1. This is a uniform
distribution. At the first tick the times are doubled, and so
the angles of the first group stretch over the range
0 <A, < 1, uniformly throughout the circle. Doubling the
angles of the second group moves them into the range
1 <A, <2, but only the fraction matters, so that group of
clock angles is also spread uniformly over 0 <A, <1. In
other words, a uniform distribution of angles is unchanged
by a Bernoulli shift, and it is therefore called the invariant
distribution of the Bernoulli shift. Any other initial
distribution of angles eventually evolves toward the
uniform invariant distribution. What distribution of x is
implied by the uniform distribution of angles? Probability
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Fig.10: Plots of parabola f(x) =px(1—x) for p=1, 2, 3 and 4. Note that
the maximum occurs at x=1, and has the value p/4. The graphical
method of iterating the logistic equation is shown for p=2: starting at
the initial point x =x,, we go vertically to the curve, then horizontally to
the line, which gives x=x,, then iterate by repeatedly going vertically to
the curve and horizontally to the line. When p=2, this eventually leads
to the “fixed point” x=x, , where f(x)=x.
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theory tells us that the answer is inversely proportional to
the derivative of (9),

probability (x) = [dx/dA] . (13)

Some calculus shows that the derivative, dx/dA, is small
near x =0 and x = 1, so the probability becomes large
near these two points, and has a minimum in between,
which agrees with the observations in Figs.6c and 6d.

Now let us return to the cases for which p is between
2 and 4. Recall from Fig.10 that at p = 2 the solution ap-
proaches the stable fixed point at x,* = 1, where the slope
of f is zero. As p increases to 3, the peak of the parabola
moves up, x,* moves to the right to 2, and the tangent to
the curve at x,* approaches 45° from the horizontal, where
the slope equals — 1. Fig.12 graphically demonstrates the
slope-stability theorem: fixed points at which the curve is

12

A 2x T
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cos (2nA)
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Fig.11: Interpretation of the change of variables given in equation (9).
The clock radius is 1, and the angle A measures the fraction of
circumference between the clock hand and 12 o’clock.

45° or steeper (i.e. the magnitude of the slope exceeds 1)
are unstable, but those with lower slopes are stable. The
slope at x,* can be computed by taking the derivative of
(6) and substituting (8). That gives

slope=2 —p. (14)

This slope becomes equal to — 1 when p becomes equal to
p, =3, where x,* =2 Fig.13a shows what happens
slightly above p,. No matter where we start, eventually an
alternating sequence, or two-cycle is produced: the
sequence X, X;, X,, ... eventually becomes x,¥, x,¥, x,¥,
x,*, .... That means that fwo applications of the logistic
equation bring us back to the same point, so instead of the
fixed point condition of (7), we now have

x* = f(f(x*)) = f,(x*). (15)

where the function f,, shown in Fig.13b, is the second
iterate of f, defined as f,(x) =f(f(x)) =
plf(x)] (1 —[f(x)]) =px(1 —x) (1 —px(l —x)). If
x*=£0, then x* can be divided out of (15), leaving a cubic
equation with three solutions which determine the three
nonzero locations where f, intersects the line in Fig.13b.
The central fixed point of f, is identical to x,¥, the fixed
point of f, since one solution of (15) is obtained by setting

f(x*) = x*. The other two fixed points of f, form the two-
cycle of f.

The stability at each fixed point of f, is determined by
the slope at each point. The slope of f, is related to the
slope of f by a simple product rule:

slope of f, at x,, = (slope of f at x,) X
(slope of f at x,, ), (16)

which comes from the chain rule for derivatives. If we ap-
ply the rule at the central fixed point of f, (which is also
the fixed point of f), we can use x,, | | = X, = X,¥, so the
rule tells us that

slope of f, at x,* = (slope of f at x,*)° (17

This implies that when the slope of f at x,* becomes
steeper than — 1 (i.e. as p increases past p;) then the
slope of f, at x,* simultaneously becomes steeper than
+ 1. So below p,, f, has only one stable fixed point (at
Xo¥), but it becomes unstable as p passes p,, when x,* and
x,* appear. This splitting of one stable fixed point into one
unstable and two stable fixed points is called a pitchfork bi-
Surcation. If we apply rule (16) at x, = x,*, we can use
X, = X%, and if we apply it at x, = x,¥, we can use
X, .1 = X,% so in either case we get the same product
(slope of f at x,*) times (slope of f at x,*), so that

slope of f, at x;* =slope of f, at x,*. (18)

In other words, both points of the two-cycle have the
same stability. As p continues to increase in Fig.13b, the
slopes at x,* and x,* will reach zero when x,* =1, and as
the curve steepens, x,* will move below ! while x,* will
move toward 1, and both slopes will approach — 1, where
the two-cycle will become unstable. We label that value
P = P», and just as the fixed point of f becomes a two-cycle

™~
0 < SLOPE K 1 -1 < SLOPEKO
STABLE STABLE
SLOPE > 1 SLOPE < -1
UNSTABLE UNSTABLE

Fig.12: Illustration of the “slope-stability” theorem at a fixed point: (a)
steady approach to the fixed point for slopes positive and less than 1; (b)
spiral approach for slopes negative and greater than —1; (c) steady
retreat from the fixed point for slopes greater than 1; and (d) spiral re-
treat for slopes less than —1.
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Fig.13: Relationship of f(x) (upper curve) and f,(x)=f(f(x)) {lower
curve). The unstable fixed point of f is also an unstable fixed point of f,,
while the 2-cycle of f corresponds to 2 stable fixed points of f,, both hav-
ing the same slope.

at p; = 3, each fixed point of f, becomes a two-cycle at the
higher value of p, = 3.448. The pair of two-cycles of {,
correspond to four fixed points of f; (the fourth iterate of
f) and the chain rule again implies that all four have the
same stability. The logistic equation has a stable four-cycle
just above this second period doubling at p,, and as p con-
tinues to increase, the four-cycle becomes unstable and is
replaced by a stable eight-cycle at p, = 3.544, and so on.

Feigenbaum (1983 and references therein) has
studied the limiting behavior of the period-doubling
sequence. Each period-doubling occurs after a shorter
interval of p. If p,, is the value at which the period doubles
for the nth time, the ratio of each interval p, , , — p, over
the next one approaches a number called the Feigenbaum
constant:

(Do st — Do)/ (Puss — Puyy) =4.66920166.,  (19)

Amazingly, this constant is universal, so that any function
with a single smooth maximum undergoes period-
doubling at this same rate. As n— o, p, approaches the
value

p., = 3.56994567.... (20)

Atp_ everycycle of period 2" becomes unstable, and x be-
gins to hop around on a fractal set of points—the onset of

chaos. This fractal set is called a strange attractor, and like
the Feigenbaum constant, it is universal—as long as f(x)
has a single smooth maximum, x follows the same orbit at
p.. no matter what f(x) is!

The complete behavior of the logistic equation can be
summarized by its bifurcation plot. Fig.14a shows a
portion of it computed from numerical solutions of the
logistic equation in the range 3<p<4. For each p along the
horizontal axis, (6) was iterated starting at x, = 2/3, the
first 5000 values were discarded, and the rest were plotted
on the vertical axis. The first 4 period-doublings are visible
at p<p,,, followed by bands of chaos at p>p_ , which
gradually widen and merge until the full range of x is cov-
ered at p =4. Windows of periodicity are visible in the
chaotic region, the widest having 3 values of x—a triplet of
period 3. If we expand the region around the largest triplet
value, we obtain Fig.14d, where the scale has been
expanded by a factor of 0.016. This tiny part is similar to
the full set, and has its own triplet window. Clearly this ex-
pansion process could continue indefinitely. Such a set
which has complex structure at any magnification is called
a fractal (Mandelbrot, 1983).

Sarkowskii’s theorem, often stated as ‘“‘period 3
implies chaos,” tells us that there are windows of every
other integer period to the left of the triplet window in
Fig.14, and the theorem gives the order of the periods.
(For a simple proof, see Kaplan, 1987). The period 3
window begins at p=p, =212+ 1=3.828427...,
where f;(x) is tangent to the x,,, = x, line at three
locations, as shown in Fig.15a. When p exceeds p,, the
curve crosses the line, producing a stable and an unstable
fixed point at each location. This is called a rangent
bifurcation. When p is slightly less than p,, then the curve
will be slightly above the line, similar to what was
observed with the cobra in Fig.8a. In this pre-bifurcation
situation the neighborhood of the near-tangency behaves
like a pinched hose, as shown in Fig.15b. Many iterations
are required in order to pass through the pinched region.
This leads to the often-observed phenomenon of “inter-
mittency,” in which periods of chaos alternate with
apparently periodic behavior. This is responsible for the
denser regions in the chaos just to the left of the period 3
window in Fig.14a, and also accounts for the three peaks
in the histogram of the cobra.

Finally, consider what happens when (6) begins to
break down, so that x,, , ; depends not only on x,, but on
earlier intervals as well. Such dependence was observed
not only for the cobra and dragon, but even for the
parabola, where the three-dimensional view seen in Fig.7
reveals a three-striped ribbon. Perhaps the simplest
generalization of the logistic equation is the Henon map,
one form of which is

Xn+1 :f(xnyxn—l):pxn(l _Xn) + q(xn—l _%)
(21)

As q approaches zero, the dependence on x,., goes away
and we get the logistic equation again. Fig.7b shows an or-
bit of this equation computed with p=3.45 and
q = 0.345, and plotted with the same axes as in Fig.7a.
The details are different from Fig.7a, but the general shape
is similar, and three stripes are visible. On closer
inspection the rightmost stripe resolves into three closely
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Fig.14; Stable attractor values of x on the vertical axis as a function of
the control parameter p on the horizontal (a so-called bifurcation plot).
The upper left region (a) shows the complete plot beginning at the first
bifurcation, (2.97,0) to (4.0,1), and the other three regions show the
following subwindows: (b) the onset of chaos: (3.555, 0.4775) to (3.582,
0.5045); (c) the central intersection of chaotic bands: (3.625, 0.630) to
(3.785, 0.790); and (d) the top branch of the triplet window: (3.841, 0.950)
to (3.857, 0.966).

spaced stripes, and if we continue to zoom in, more and
more stripes are resolved. Again we have a fractal set.
Zooming in on the turning point at the top of the figure
produces an image that looks similar to the rings of Saturn
(see p. 53 of Crutchfield et al.,, 1986).

Faucet Physics

Imagine a pendant drop, hanging at rest on the tip of the
faucet or eyedropper. The force of gravity gives the drop
weight, and pulls it down, but this is balanced by cohesive
forces which create surface tension, holding the drop
together and pulling it back toward the column of fluid in
the eyedropper. If the flow rate is small, but nonzero, the
mass of the drop slowly increases, stretching the drop
downward. When the drop is small, surface tension tends
to make it round, but as it grows, gravity increasingly
elongates it. Gravity becomes important as the drop’s
length exceeds the meniscus constant (o/pg)? =2.5 mm,
after which the drop forms a neck, which gradually closes
off its connection with the fluid above, until it breaks off
and begins to fall. As the drop falls, it oscillates about a
shape approximately spherical, and the water column
rebounds and oscillates about an equilibrium position,
until friction with the walls slows it to rest, after which the
small flow rate begins to form a new drop. When the flow
rate is small enough, the motion of the fluid is
unimportant, and the mass of the drop at the breaking
point is purely an equilibrium problem, which may have a
complicated dependence on properties of both the water
and the eyedropper, but will be the same for every drop. In
that case, each drop will have the same mass, and
therefore take the same amount of time to form, resulting

in the slow periodic rhythm so torturous to those striving
toward sleep.

The situation is much different at higher flow rates.
Then the breaking point occurs when the fluid is still
oscillating from the previous drop. There is a resonance
between the forcing frequency, which is the drop
formation time, and the natural oscillation frequency of
the water column. The natural oscillation frequency of a
single drop can be computed from Rayleigh’s formula,
which for the lowest mode in pure water has the form
f=11d~'* (Nelson and Gokhale, 1972), where d is the
drop diameter in cm. For the 5.2 mm drops observed here,
that gives about 30 cycles/s—too high to explain the
observation of chaos at less than 10 drops/s. The natural
frequency is inversely proportional to the square root of
the mass, so the oscillating mass of fluid in the eyedropper
is evidently about 10 drop masses.

At higher flow rates, then, the drop’s mass depends
upon the column’s motion, which depends upon the
previous drop’s mass, which depends upon the previous
motion, and so on. While this sounds very difficult to
model, the fact that many different faucets produce the
same set of rhythms (period doubling, the parabola,
cobra, dragon, etc.) gives us hope that a highly simplified
model might capture the essential physics of the dripping
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Fig,15: Plot of f,(x)=f(f(f(x))) at a value of p just below the period 3 win-
dow (on the right side of Fig.14a and to the left of Fig.14d). (a) the com-
plete f;; (b) a blowup of f, near x=1. The fact that many iterations are re-
quired to pass through the narrow neck leads to the often-observed
phenomenon of “intermittency”, in which apparently periodic behavior
occasionally appears in the midst of chaos, as in Fig.8e.



process. To do this, Shaw considered a much simpler
system-—a mass on a spring. The mass, m, represents the
whole fluid column, including the growing drop, but in
this model the mass is concentrated at a single point at a
position y below the equilibrium position (assume
downward = positive). The spring produces a linear
restoring force equal to — kp, where the spring constant k
represents surface tension. The mass is subject to a
Newtonian friction force — bv, where v is the mass’s
speed,
dy/dt =v (22)
and b represents friction between the fluid and the faucet.
The acceleration of the drop is given by Newton’s law:
dv/dt =g — (ky + bv)/m, (23)
where g is the acceleration of gravity. After a drop breaks
off at time f=1{, the mass is assumed to grow as
m=mgy+c(t—1t,), (24)
where my is the mass immediately after time ¢, (minus the
drop), and ¢ is the mass flow rate. As the mass grows, it
may still be oscillating from the previous drop, but
eventually dv/dt becomes positive, the mass accelerates
downward, the spring stretches, and eventually the next
drop breaks off, at say ¢t = ¢,. For simplicity, the break is
assumed to always occur at a fixed location y = y,. Shaw
(1984) took the mass of the drop to be proportional to the
velocity at the breakpoint, while Scott designed an analog
computer which decreased the flow rate by an amount
proportional to the distance past the breakpoint, y — y,
(private communication). A simpler rule resets m to m,
at each breakpoint by simply replacing ¢, by ¢, £,, etc. in
(24). The mass of drop » is then just c¢(z, — ¢, ).
The spring analog of a dripping faucet (for any
breakpoint rule) shares with the Bernoulli shift the two es-
sential features of chaos: small changes in initial condi-
tions are amplified over short time intervals, but the
solution is confined to a limited region over longer time in-
tervals. The Bernoulli shift amplifies angular differences
by doubling them at each iteration, but keeps them limited
by dropping the integer part. The spring analog of the
dripping faucet amplifies differences in the drop mass
because larger drops tend to cause larger rebounds and
longer time intervals. This tends to make the next drop
larger, but the drop mass is limited because release of a
large mass will cause the spring to rebound past its
equilibrium point, causing the spring to push in the same
direction as gravity, and shorten the time interval and the
mass of the next drop. This constant competition between
local amplification and global limitation, or between inner
freedom and outer constraint, is the essence of chaos.

Discussion

Most of us are familiar with the academic and recreational
capabilities of personal computers, but they are also
highly sophisticated measuring devices. Some relatively
simple plumbing and soldering enables the computer to
measure the rapid chaotic rhythms of thousands of drops
with accuracies approaching a millionth of a second. The

computer becomes a kind of temporal microscope,
revealing the marvelous variety of tap dancing going on
under the most ordinary leaky faucet. This rich rhythmic
behavior creates data clouds of simple spherical and
parabolic form, as well as a zoo of complex fractal ribbons
not yet fully understood.

These fractal attractor patterns are not only pleasant
to the eye, but can also be put to practical use predicting
apparently random behavior such as that shown in Figs.5
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Fig.16: Plot of two 50-drop sequences of time intervals taken from the
data in Fig.5c. The starting points were selected by choosing two points
nearby on the attractor shown in Fig,7a. The drop intervals remain close
together for the first 10 drops, but deviate significantly for drops 11-25,
then are back in agreement for drops 26-34, and finally disagree for the
remainder. Such behavior shows that analogue prediction schemes, such
as those used in short-term weather forecasting, can successfully predict
chaotic sequences for a limited time.

and 8. As a simple example, imagine that after collecting
drop times in Fig.5c up to drop n = 500, we wish to
predict what will happen next. From the previous data, lo-
cate points close to (T, T, .., ) on the attractor in Fig.6c.
Each of these points with coordinates (T,,, T,, . , ), where
m < n, have successors T, , ,, and Fig.7a shows that they
provide a good prediction of T, | ,. This means that if a
pair of drop times is similar to some past pair, what
happens next will also be similar for a while. A related
procedure called ‘“‘analog prediction” has occasional
success in weather forecasting, and is probably superior to
linear statistical prediction since the atmosphere’s attrac-
tor, like Fig.7a, is expected to be nonlinear (Lorenz,
1977). The atmosphere’s nonlinearity leads to the fractal
structure of clouds (Cahalan, 1989) just as the dripping
faucet’s nonlinearity leads to fractal chaotic time intervals.
Fig.16 illustrates the potential predictability inherent
in the attractor of Fig.7a by overlaying two such analogs
from the middle of Fig.5c, showing that a single past
analog can predict a dripping faucet with reasonable
accuracy 7-10 drops ahead. Considerable progress is
needed before weather can be predicted equalily well 7-10
days ahead. In simple systems predictions can be greatly
improved by finding each successive interval from a
weighted average of a number of neighboring attractor
points (Farmer and Sidorowich, 1987; Casdagli, 1989).
Such methods are much more difficult to apply in higher-
dimensional systems such as weather and climate.
The basic dripping faucet experiment described here
can be extended in a number of directions: varying the flu-



id properties, varying the eyedropper properties, varying
the environment, and measuring new properties of the
dripping process. Wu et al., (1989) and Wu and Schelly
(1989) have reduced surface tension by adding the
surfactant SDS to the water, producing data clouds whose
fractal structure is much clearer, and also finding some
new multi-loop patterns. One could also study the effect of
fluid density and viscosity, using fluids like oil and
mercury. Wu et al. found no strong temperature-
dependence for water near room temperature, but what
about fluids in temperature ranges where physical
properties are changing? Another variable is the shape and
size of the eyedropper orifice. What happens if it is
covered by a screen? An interesting environmental
variation is to apply a constant electric field to the orifice
by placing the center of a horizontal copper ring about one
ring radius below the eyedropper, and applying a constant
voltage. (Earth’s ambient field is typically 100V/m
downward.) Since water is highly polar, each drop tends
to break off with a small net charge, which increases
linearly with the applied voltage. Are drop rhythms
affected by electric fields? What if the polarizability is
altered by, say, changing the salinity?

Besides varying more parameters, we nced to refine
and extend the measurements. One very useful extension
of our photodiode detector would be a camera shutter
release triggered by each passing drop. This would
generate a movie with the triggering drop in the same
position in each frame. Each following drop then appears
at a height proportional to the time interval, so that
successive frames produce a continuous chaotic dance. A
stroboscope can also reveal chaotic patterns, but these are
not simply related to the time intervals.

Besides the drop time interval, other useful measure-
ments include the drop diameter and the drop charge. The

diameter could be estimated from the drop passage time,
determined from the pulse width of the photodiode
detector voltage. One way to get the pulse widths is to con-
nect the photodiode detector to an analog-to-digital
converter chip (like Radio Shack’s TLC548), allowing
the complete voltage time series to be recorded digitally.
This would require considerable data storage. The charge
might be found from the current induced in a conducting
ring. Shaw’s spring analog model suggests that it would
also be of interest to study the recoil of the fluid column
resulting from each drop release, to see if it is related to the
drop mass or charge. Perhaps this could be done by
mounting the eyedropper on a piezoelectric crystal.

Robert Shaw concludes his monograph on the
dripping faucet with the hope that his work “‘suggests that
one does not need a particle accelerator to step to the fron-
tiers of physics.” We hope even some nonprofessional
readers might have that frontier experience, and we have
tried to show that it does not necessarily require a well-
equipped scientific laboratory, but only access to some
relatively common technology.
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Listing 1. Program droptime.c.

f#include <stdio.h>

#include <alloch>

#include <stdlibhs

F#include <conio.h>

#include <ctypeh>

#rinclude <stringh>

#include <dos.h>

Hdefine NDROPS

#ifdef AT Fdefine BIT?

10 dfelse #define BIT7

11 #tendif

12 tdefine TICKSPERSEC

13 fdefine LONGS

14 void cardinal(long l,double *r)

15 {*r = ({1 <0)?7LONGS + (long)l:(long)1);
}

1600
128&inportb(0x3BD)
128&inportb(0x379)

W~ U W -

1193181.667
4,294,967,296.0

17 void elapsedtime(long start, long stop, -double *t)
18  {double temp;
19 cardinal(stop-start, &temp);
20 *t = (1000.0*temp)/TICKSPERSEC;
¥

22 void initializetimer(void)
23 { outportb(0x043,0x034);
24 asm jmp short NullJumpt
25 NullJumpl:;

26 outportb{0x040,0x000);
27  asm jmp short NullJump2
28 NullJump2:;

29 outportb(0x040,0x000);

}

31 void restoretimer{void)
32 { outportb(0x043,0x036);
33 asm/jmp short NullJumpl
34 NullJumpl:;
35  outportb{0x040,0x000);
36  asm jmp short NullJump2
37 Nulump2;
38  outportb(0x040,0x000);

}

40 long readtimer(void)
41 { asm cli

42
43
44
45
46
47
48
49

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
686
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

asm mov dx,020h
asm mov al,00Ah
asm out dx,al
mov al,00h
asm out 043h,al
asm in al,dx

mov di,ax

in al,040h
mov bl,al
asm in al,040h
mov bh,al
notbx

in al,021h
asm mov  si,ax
mov al,00FFh
asm out 021h,al
asm mov ax,040h
asm mov es,ax
mov dx,es:{06Ch]
mov ax,si
asm out 021h,al
asm st

mov ax,di
test al,001h
asm jz done

asm cmp bx,0FFh
asm ja done

asm inc dx
done:;

asm mov ax,bx

void main()

{int dropcount = 0;

long start_t, stop_t;

double *t_p, *first_t_p, *temp_p;

char YNanswer, *datafile, *tempfn;

FILE *f_p;

H({t_p = (double *)

malloc(NDROPS*sizeof(double))) = = NULL)
printf(“nNot enough storage 1”);
exit(0); }

temp._p=first_t_p=1t_p;

Compile with Turbo C and TASM or MASM.

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
14
115
116
117
118
119
120

121
122
123

datafile = (char *)malloc(26);
tempfn = (char *}malloc(26);
initializetimer( };
puts(*\nHit a key to begin data collection.\n");
while(tkbhit() );
geteh();
while(BIT7);
start_.t = readtimer();
delay (209;
puts(“Starting...\n"};
while(dropcount <« NDROPS && !kbhit()) {
while(BIT7);
stop __t = readtimer( );
delay(20);
elapsedtime(start_t, stop t, t_p);
start_t =stop_t;
Ep+ 4+
patch(*.’);
dropgaunt + + ;}
restoretimer{);
puts(“nHit a key to view data.\n”);
getch ()
while(temp_p + + <t_p) printf(“%10.26\t", *temp_p);
puts(“nSave data? ‘N' to quit, 'Y’ to save:\n");
scanf(“%c”,” & Y Nanswer);
if(toupper{ YNanswer)! = ‘N') {
puts{“Insert disk, then hit a key.\n");
while{tkbhit(});
getch();
puts(“Filename (8 characters or less):");
scanf(“%s”, datafile);
strepy (tempfn,“ai\ \");
tempfn = streat(tempfn, datafile);
datafile = strcat (tempfn, *.dat”);
. p = fopen(datafile, “wt");
temp_.p = first_t_p;
while(terp_p + + <t_p)
fprintf(f_p,“%10.2f\n"", *temp_p);
felose(f .p);
printf(*nData saved in %s M, datafile);}
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